Data Original Title Example For Essay

How to Write Your Thesis

compiled by Kim Kastens, Stephanie Pfirman, Martin Stute, Bill Hahn, Dallas Abbott, and Chris Scholz
 

I. Thesis structure

Title Page

Title (including subtitle), author, institution, department, date of delivery, research mentor(s) and advisor, their instututions and email adresses
 

Abstract

  • A good abstract explains in one line why the paper is important. It then goes on to give a summary of your major results, preferably couched in numbers with error limits. The final sentences explain the major implications of your work. A good abstract is concise, readable, and quantitative. 
  • Length should be ~ 1-2 paragraphs, approx. 400 words.
  • Absrtracts generally do not have citations.
  • Information in title should not be repeated. 
  • Be explicit. 
  • Use numbers where appropriate.
  • Answers to these questions should be found in the abstract: 
    1. What did you do? 
    2. Why did you do it? What question were you trying to answer? 
    3. How did you do it? State methods.
    4. What did you learn? State major results. 
    5. Why does it matter? Point out at least one significant implication.

Table of Contents

  • list all headings and subheadings with page numbers
  • indent subheadings
  • it will look something like this:

Page #
List of Figuresxxx
List of Tables 
Introduction 
     subheads ...?
 
Methods 
     subheads ...?
 
Results 
     subheads ...? 
 
Discussion 
     subheads ...? 
 
Conclusion 
Recommendations 
Acknowledgments 
References 
Appendices 

List of Figures

List page numbers of all figures.
The list should include a short title for each figure but not the whole caption. 

List of Tables

List page numbers of all tables.
The list should include a short title for each table but not the whole caption. 

Introduction

You can't write a good introduction until you know what the body of the paper says. Consider writing the introductory section(s) after you have completed the rest of the paper, rather than before.

Be sure to include a hook at the beginning of the introduction. This is a statement of something sufficiently interesting to motivate your reader to read the rest of the paper, it is an important/interesting scientific problem that your paper either solves or addresses. You should draw the reader in and make them want to read the rest of the paper.

The next paragraphs in the introduction should cite previous research in this area. It should cite those who had the idea or ideas first, and should also cite those who have done the most recent and relevant work. You should then go on to explain why more work was necessary (your work, of course.)
 

What else belongs in the introductory section(s) of your paper? 
  1. A statement of the goal of the paper: why the study was undertaken, or why the paper was written. Do not repeat the abstract. 
  2. Sufficient background information to allow the reader to understand the context and significance of the question you are trying to address. 
  3. Proper acknowledgement of the previous work on which you are building. Sufficient references such that a reader could, by going to the library, achieve a sophisticated understanding of the context and significance of the question.
  4. The introduction should be focused on the thesis question(s).  All cited work should be directly relevent to the goals of the thesis.  This is not a place to summarize everything you have ever read on a subject.
  5. Explain the scope of your work, what will and will not be included. 
  6. A verbal "road map" or verbal "table of contents" guiding the reader to what lies ahead. 
  7. Is it obvious where introductory material ("old stuff") ends and your contribution ("new stuff") begins? 
Remember that this is not a review paper. We are looking for original work and interpretation/analysis by you. Break up the introduction section into logical segments by using subheads. 

Methods

What belongs in the "methods" section of a scientific paper?
  1. Information to allow the reader to assess the believability of your results.
  2. Information needed by another researcher to replicate your experiment.
  3. Description of your materials, procedure, theory.
  4. Calculations, technique, procedure, equipment, and calibration plots. 
  5. Limitations, assumptions, and range of validity.
  6. Desciption of your analystical methods, including reference to any specialized statistical software. 
The methods section should answering the following questions and caveats: 
  1. Could one accurately replicate the study (for example, all of the optional and adjustable parameters on any sensors or instruments that were used to acquire the data)?
  2. Could another researcher accurately find and reoccupy the sampling stations or track lines?
  3. Is there enough information provided about any instruments used so that a functionally equivalent instrument could be used to repeat the experiment?
  4. If the data are in the public domain, could another researcher lay his or her hands on the identical data set?
  5. Could one replicate any laboratory analyses that were used? 
  6. Could one replicate any statistical analyses?
  7. Could another researcher approximately replicate the key algorithms of any computer software?
Citations in this section should be limited to data sources and references of where to find more complete descriptions of procedures.
Do not include descriptions of results. 

Results

  • The results are actual statements of observations, including statistics, tables and graphs.
  • Indicate information on range of variation.
  • Mention negative results as well as positive. Do not interpret results - save that for the discussion. 
  • Lay out the case as for a jury. Present sufficient details so that others can draw their own inferences and construct their own explanations. 
  • Use S.I. units (m, s, kg, W, etc.) throughout the thesis. 
  • Break up your results into logical segments by using subheadings
  • Key results should be stated in clear sentences at the beginning of paragraphs.  It is far better to say "X had significant positive relationship with Y (linear regression p<0.01, r^2=0.79)" then to start with a less informative like "There is a significant relationship between X and Y".  Describe the nature of the findings; do not just tell the reader whether or not they are significant. 

Note: Results vs. Discussion Sections

Quarantine your observations from your interpretations. The writer must make it crystal clear to the reader which statements are observation and which are interpretation. In most circumstances, this is best accomplished by physically separating statements about new observations from statements about the meaning or significance of those observations. Alternatively, this goal can be accomplished by careful use of phrases such as "I infer ..." vast bodies of geological literature became obsolete with the advent of plate tectonics; the papers that survived are those in which observations were presented in stand-alone fashion, unmuddied by whatever ideas the author might have had about the processes that caused the observed phenomena.
 
How do you do this? 
  1. Physical separation into different sections or paragraphs.
  2. Don't overlay interpretation on top of data in figures. 
  3. Careful use of phrases such as "We infer that ".
  4. Don't worry if "results" seem short.
Why? 
  1. Easier for your reader to absorb, frequent shifts of mental mode not required. 
  2. Ensures that your work will endure in spite of shifting paradigms.

Discussion

Start with a few sentences that summarize the most important results. The discussion section should be a brief essay in itself, answering the following questions and caveats: 
  1. What are the major patterns in the observations? (Refer to spatial and temporal variations.)
  2. What are the relationships, trends and generalizations among the results?
  3. What are the exceptions to these patterns or generalizations?
  4. What are the likely causes (mechanisms) underlying these patterns resulting predictions?
  5. Is there agreement or disagreement with previous work?
  6. Interpret results in terms of background laid out in the introduction - what is the relationship of the present results to the original question?
  7. What is the implication of the present results for other unanswered questions in earth sciences, ecology, environmental policy, etc....?
  8. Multiple hypotheses: There are usually several possible explanations for results. Be careful to consider all of these rather than simply pushing your favorite one. If you can eliminate all but one, that is great, but often that is not possible with the data in hand. In that case you should give even treatment to the remaining possibilities, and try to indicate ways in which future work may lead to their discrimination.
  9. Avoid bandwagons: A special case of the above. Avoid jumping a currently fashionable point of view unless your results really do strongly support them. 
  10. What are the things we now know or understand that we didn't know or understand before the present work?
  11. Include the evidence or line of reasoning supporting each interpretation.
  12. What is the significance of the present results: why should we care? 
This section should be rich in references to similar work and background needed to interpret results. However, interpretation/discussion section(s) are often too long and verbose. Is there material that does not contribute to one of the elements listed above? If so, this may be material that you will want to consider deleting or moving. Break up the section into logical segments by using subheads. 

Conclusions

  • What is the strongest and most important statement that you can make from your observations? 
  • If you met the reader at a meeting six months from now, what do you want them to remember about your paper? 
  • Refer back to problem posed, and describe the conclusions that you reached from carrying out this investigation, summarize new observations, new interpretations, and new insights that have resulted from the present work.
  • Include the broader implications of your results. 
  • Do not repeat word for word the abstract, introduction or discussion.

Recommendations

  • Include when appropriate (most of the time)
  • Remedial action to solve the problem.
  • Further research to fill in gaps in our understanding. 
  • Directions for future investigations on this or related topics. 

Acknowledgments 

Advisor(s) and anyone who helped you: 
  1. technically (including materials, supplies)
  2. intellectually (assistance, advice)
  3. financially (for example, departmental support, travel grants) 

References 

  • cite all ideas, concepts, text, data that are not your own
  • if you make a statement, back it up with your own data or a reference
  • all references cited in the text must be listed
  • cite single-author references by the surname of the author (followed by date of the publication in parenthesis)
    • ... according to Hays (1994)
    • ... population growth is one of the greatest environmental concerns facing future generations (Hays, 1994).
  • cite double-author references by the surnames of both authors (followed by date of the publication in parenthesis)
    • e.g. Simpson and Hays (1994)
  • cite more than double-author references by the surname of the first author followed by et al. and then the date of the publication
    • e.g. Pfirman, Simpson and Hays would be:
    • Pfirman et al. (1994)
  • do not use footnotes
  • list all references cited in the text in alphabetical order using the following format for different types of material:
    • Hunt, S. (1966) Carbohydrate and amino acid composition of the egg capsules of the whelk. Nature, 210, 436-437.
    • National Oceanic and Atmospheric Administration (1997) Commonly asked questions about ozone. http://www.noaa.gov/public-affairs/grounders/ozo1.html, 9/27/97.
    • Pfirman, S.L., M. Stute, H.J. Simpson, and J. Hays (1996) Undergraduate research at Barnard and Columbia, Journal of Research, 11, 213-214.
    • Pechenik, J.A. (1987) A short guide to writing about biology. Harper Collins Publishers, New York, 194pp.
    • Pitelka, D.R., and F.M. Child (1964) Review of ciliary structure and function. In: Biochemistry and Physiology of Protozoa, Vol. 3 (S.H. Hutner, editor), Academic Press, New York, 131-198.
    • Sambrotto, R. (1997) lecture notes, Environmental Data Analysis, Barnard College, Oct 2, 1997.
    • Stute, M., J.F. Clark, P. Schlosser, W.S. Broecker, and G. Bonani (1995) A high altitude continental paleotemperature record derived from noble gases dissolved in groundwater from the San Juan Basin, New Mexico. Quat. Res., 43, 209-220.
    • New York Times (1/15/00) PCBs in the Hudson still an issue, A2.
  • it is acceptable to put the initials of the individual authors behind their last names, e.g. Pfirman, S.L., Stute, M., Simpson, H.J., and Hays, J (1996) Undergraduate research at ...... 

Appendices 

  • Include all your data in the appendix. 
  • Reference data/materials not easily available (theses are used as a resource by the department and other students). 
  • Tables (where more than 1-2 pages).
  • Calculations (where more than 1-2 pages).
  • You may include a key article as appendix. 
  • If you consulted a large number of references but did not cite all of them, you might want to include a list of additional resource material, etc.
  • List of equipment used for an experiment or details of complicated procedures.
  • Note: Figures and tables, including captions, should be embedded in the text and not in an appendix, unless they are more than 1-2 pages and are not critical to your argument. 

II. Crosscutting Issues

What Are We Looking For?

We are looking for a critical analysis. We want you to answer a scientific question or hypothesis. We would like you to gather evidence -- from various sources -- to allow you to make interpretations and judgments. Your approach/methods should be carefully designed to come to closure. Your results should be clearly defined and discussed in the context of your topic. Relevant literature should be cited. You should place your analysis in a broader context, and highlight the implications (regional, global, etc.) of your work. We are looking for a well-reasoned line of argument, from your initial question, compilation of relevant evidence, setting data in a general/universal context, and finally making a judgment based on your analysis. Your thesis should be clearly written and in the format described below.

Planning Ahead for Your Thesis

If at all possible, start your thesis research during the summer between your junior and senior year - or even earlier - with an internship, etc. ... then work on filling in background material and lab work during the fall  so that you're prepared to write and present your research during the spring . The best strategy is to pick a project that you are interested in, but also that a faculty member or other professional is working on. This person will become your research mentor and this gives you someone to talk with and get background material from. If you're unsure about the selection of a project, let us know and we'll try to connect you with someone.  

 

Writing for an Audience

Who is your audience? 
  1. Researchers working in analogous field areas elsewhere in the world (i.e. other strike-slip faults, other deep sea fans). 
  2. Researchers working in your field area, but with different techniques.
  3. Researchers working on the same interval of geologic time elsewhere in the world. 
  4. All other researchers using the same technique you have used . 
  5. If your study encompasses an active process, researchers working on the same process in the ancient record.
  6. Conversely, if your study is based on the rock record, people studying modem analogs. 
  7. People writing a synthesis paper on important new developments in your field.
  8. People applying earth science to societal problems (i.e. earthquake hazard reduction, climate warming) who will try to understand your paper. 
  9. Potential reviewers of your manuscript or your thesis committee.

Skimming vs. Reading

Because of the literature explosion, papers more skimmed than read. Skimming involves reading the abstract, and looking at the figures and figure captions. Therefore, you should construct your paper so that it can be understood by skimming, i.e., the conclusions, as written in your abstract, can be understood by study of the figures and captions. The text fills out the details for the more interested reader.
 

Order of Writing

Your thesis is not written in the same order as it is presented in. The following gives you one idea how to proceed. 
  1. first organize your paper as a logical argument before you begin writing
  2. make your figures to illustrate your argument (think skimming)
  3. the main sections are: background to the argument (intro); describing the information to be used in the argument, and making points about them (observations), connecting the points regarding the info (analysis), summing up (conclusions). 
  4. outline the main elements: sections, and subsections
  5. begin writing, choosing options in the following hierarchy - paragraphs, sentences, and words. 
Here is another approach. 
  1. Write up a preliminary version of the background section first. This will serve as the basis for the introduction in your final paper. 
  2. As you collect data, write up the methods section. It is much easier to do this right after you have collected the data. Be sure to include a description of the research equipment and relevant calibration plots. 
  3. When you have some data, start making plots and tables of the data. These will help you to visualize the data and to see gaps in your data collection. If time permits, you should go back and fill in the gaps. You are finished when you have a set of plots that show a definite trend (or lack of a trend). Be sure to make adequate statistical tests of your results. 
  4. Once you have a complete set of plots and statistical tests, arrange the plots and tables in a logical order. Write figure captions for the plots and tables. As much as possible, the captions should stand alone in explaining the plots and tables. Many scientists read only the abstract, figures, figure captions, tables, table captions, and conclusions of a paper. Be sure that your figures, tables and captions are well labeled and well documented. 
  5. Once your plots and tables are complete, write the results section. Writing this section requires extreme discipline. You must describe your results, but you must NOT interpret them. (If good ideas occur to you at this time, save them at the bottom of the page for the discussion section.) Be factual and orderly in this section, but try not to be too dry. 
  6. Once you have written the results section, you can move on to the discussion section. This is usually fun to write, because now you can talk about your ideas about the data. If you can come up with a good cartoon/schematic showing your ideas, do so. Many papers are cited in the literature because they have a good cartoon that subsequent authors would like to use or modify. 
  7. In writing the discussion session, be sure to adequately discuss the work of other authors who collected data on the same or related scientific questions. Be sure to discuss how their work is relevant to your work. If there were flaws in their methodology, this is the place to discuss it.
  8. After you have discussed the data, you can write the conclusions section. In this section, you take the ideas that were mentioned in the discussion section and try to come to some closure. If some hypothesis can be ruled out as a result of your work, say so. If more work is needed for a definitive answer, say that.
  9. The final section in the paper is a recommendation section. This is really the end of the conclusion section in a scientific paper. Make recommendations for further research or policy actions in this section. If you can make predictions about what will be found if X is true, then do so. You will get credit from later researchers for this. 
  10. After you have finished the recommendation section, look back at your original introduction. Your introduction should set the stage for the conclusions of the paper by laying out the ideas that you will test in the paper. Now that you know where the paper is leading, you will probably need to rewrite the introduction. 
  11. You must write your abstract last. 

 

Figures and Tables

  • The actual figures and tables should be embedded/inserted in the text, generally on the page following the page where the figure/table is first cited in the text. 
  • All figures and tables should be numbered and cited consecutively in the text as figure 1, figure 2, table 1, table 2, etc. 
  • Include a caption for each figure and table, citing how it was constructed (reference citations, data sources, etc.) and highlighting the key findings (think skimming). Include an index figure (map) showing and naming all locations discussed in paper. 
  • You are encouraged to make your own figures, including cartoons, schematics or sketches that illustrate the processes that you discuss. Examine your figures with these questions in mind: 
    1. Is the figure self-explanatory? 
    2. Are your axes labeled and are the units indicated? 
    3. Show the uncertainty in your data with error bars. 
    4. If the data are fit by a curve, indicate the goodness of fit.
    5. Could chart junk be eliminated? 
    6. Could non-data ink be eliminated?
    7. Could redundant data ink be eliminated?
    8. Could data density be increased by eliminating non-data bearing space?
    9. Is this a sparse data set that could better be expressed as a table?
    10. Does the figure distort the data in any way?
    11. Are the data presented in context?
    12. Does the figure caption guide the reader's eye to the "take-home lesson" of the figure?
  • Figures should be oriented vertically, in portrait mode, wherever possible. If you must orient them horizontally, in landscape mode, orient them so that you can read them from the right, not from the left, where the binding will be. 

Tying the Text to the Data 

"Show them, don't just tell them…" Ideally, every result claimed in the text should be documented with data, usually data presented in tables or figures. If there are no data provided to support a given statement of result or observation, consider adding more data, or deleting the unsupported "observation." 
Examine figure(s) or table(s) pertaining to the result(s). 
Assess whether: 
  1. the data support the textual statement
  2. the data contradict the textual statement
  3. the data are insufficient to prove or refute the textual statement
  4. the data may support the textual statement, but are not presented in such a way that you can be sure you are seeing the same phenomenon in the data that the author claims to have seen.

Giving Credit

How does one fairly and accurately indicate who has made what contributions towards the results and interpretations presented in your paper?: by referencing, authorship, and acknowledgements.
Different types of errors:
  1. direct quotes or illustrations without quotation marks, without attribution
  2. direct quotes without quotation marks, with attribution
  3. concepts/ideas without attribution
  4. concepts/ideas with sloppy attribution
  5. omitting or fabricating data or results
Check references carefully and reread reference works prior to publication. The first time you read something, you will consciously remember some things, but may subconsciously take in other aspects. It is important to cross check your conscious memory against your citations.
See also:
D. Kennedy, 1985, On Academic Authorship
Sigma Xi, 1984, Honor in Science
Yale University pamphlet on plagiarism
 

Final Thesis

  • Make 3 final copies: 1 to mentor and 2 to department, so that we can have 2 readers. 
  • Final thesis should be bound.
  • Printed cleanly on white paper. 
  • Double-spaced using 12-point font. 
  • 1-inch margins. 
  • Double-sided saves paper. 
  • Include page numbers.

Resources

  • The Barnard Writing Room provides assistance on writing senior theses.
  • Look at other theses on file in the Environmental Science department, they will give you an idea of what we are looking for. 
  • Of course do not hesitate to ask us, or your research advisor for help. 
  • The Barnard Environmental Science Department has many books on scientific writing, ask the departmental administrator for assistance in locating them. 
  • Also see additional books listed as Resources. 

III. Editing Your Thesis

Even a rough draft should be edited.
 

Copy Editing

  1. Proof read your thesis a few times.
  2. Check your spelling. spellcheckers are useful for initial checking, but don't catch homonyms (e.g. hear, here), so you need to do the final check by eye.
  3. Make sure that you use complete sentences
  4. Check your grammar: punctuation, sentence structure, subject-verb agreement (plural or singular), tense consistency, etc.
  5. Give it to others to read and comment.

Content Editing

  1. logic
  2. repetition, relevance
  3. style

Avoiding ambiguity

  1. Do not allow run-on sentences to sneak into your writing; try semicolons.
  2. Avoid nested clauses/phrases.
  3. Avoid clauses or phrases with more than two ideas in them.
  4. Do not use double negatives.
  5. Do not use dangling participles (i.e. phrases with an "-ing" verb, in sentences where the agent performing the action of the "-ing" verb is not specified: " After standing in boiling water for two hours, examine the flask."). 
  6. Make sure that the antecedent for every pronoun (it, these, those, that, this, one) is crystal clear. If in doubt, use the noun rather than the pronoun, even if the resulting sentence seems a little bit redundant. 
  7. Ensure that subject and verb agree in number (singular versus plural). 
  8. Be especially careful with compound subjects. Be especially careful with subject/verb agreement within clauses.
  9. Avoid qualitative adjectives when describing concepts that are quantifiable ("The water is deep." "Plate convergence is fast." "Our algorithm is better.") Instead, quantify. ("Water depths exceed 5km.") 
  10. Avoid noun strings ("acoustic noise source location technique").
  11. Do not use unexplained acronyms. Spell out all acronyms the first time that you use them. 

Thesis length

Write for brevity rather than length. The goal is the shortest possible paper that contains all information necessary to describe the work and support the interpretation. 
Avoid unnecessary repetition and irrelevant tangents. 
Necessary repetition: the main theme should be developed in the introduction as a motivation or working hypothesis. It is then developed in the main body of the paper, and mentioned again in the discussion section (and, of course, in the abstract and conclusions). 
Some suggestions on how to shorten your paper: 
  1. Use tables for repetitive information. 
  2. Include only sufficient background material to permit the reader to understand your story, not every paper ever written on the subject.
  3. Use figure captions effectively.
  4. Don't describe the contents of the figures and/or tables in the text item-by-item. Instead, use the text to point out the most significant patterns, items or trends in the figures and tables. 
  5. Delete "observations" or "results" that are mentioned in the text for which you have not shown data.
  6. Delete "conclusions" that are not directly supported by your observations or results.
  7. Delete "interpretation" or "discussion" sections that are inconclusive. 
  8. Delete "interpretation" or "discussion" sections that are only peripherally related to your new results or observations.
  9. Scrutinize adjectives! adverbs and prepositional phrases. 
Although it varies considerably from project to project, average thesis length is about 40 pages of text plus figures. This total page count includes all your text as well as the list of references, but it does not include any appendices. These generalizations should not be taken too seriously, especially if you are working on a labor-intensive lab project. If you have any questions about whether your project is of sufficient scope, consult one of us early on. 

 

Writing for an International Audience

  1. Put as much information as possible into figures and tables. In particular, try to find a way to put your conclusions into a figure, perhaps a flowchart or a cartoon. 
  2. Don't assume that readers are familiar with the geography or the stratigraphy of your field area. 
  3. Every single place-name mentioned in the text should be shown on a map. 
  4. Consider including a location map, either as a separate figure or as an inset to another figure. If your paper involves stratigraphy, consider including a summary stratigraphic column--in effect, a location map in time. 
  5. Use shorter sentences. Avoid nested clauses or phrases.  
  6. Avoid idioms. Favor usages that can be looked up in an ordinary dictionary. "Take the beaker out of the oven immediately..." rather than "Take the beaker out of the oven right away..."
Ukrainian version of this document
Russian version of this document

by: martins@ldeo.columbia.edu


 

Writing Research Papers

Writing is easy. All you do is stare at a blank sheet of paper until drops of blood form on your forehead. --- Gene Fowler

A major goal of this course is the development of effective technical writing skills. To help you become an accomplished writer, you will prepare several research papers based upon the studies completed in lab. Our research papers are not typical "lab reports." In a teaching lab a lab report might be nothing more than answers to a set of questions. Such an assignment hardly represents the kind of writing you might be doing in your eventual career.

Written and oral communications skills are probably the most universal qualities sought by graduate and professional schools as well as by employers. You alone are responsible for developing such skills to a high level.

Resources for learning technical writing

Before you begin your first writing assignment, please consult all of the following resources, in order to gain the most benefit from the experience.

  • General form of a typical research article
  • Specific guidelines (if any) for the assignment – see the writeups on individual lab studies
  • McMillan, VE. "Writing Papers in the Biological Sciences, Third Ed." New York: Bedford/St. Martin's, 2001. ISBN 0-312-25857-7 (REQUIRED for Bioc 211, 311, recommended for other science courses that include writing)
  • Writing portfolio examples (pdf)

As you polish up your writing skills please make use of the following resources

For Biosciences majors the general guidelines apply to future course work, as can be seen by examining the guidelines for the advanced experimental sciences research paper (Bioc 311).

General form of a research paper

An objective of organizing a research paper is to allow people to read your work selectively. When I research a topic, I may be interested in just the methods, a specific result, the interpretation, or perhaps I just want to see a summary of the paper to determine if it is relevant to my study. To this end, many journals require the following sections, submitted in the order listed, each section to start on a new page. There are variations of course. Some journals call for a combined results and discussion, for example, or include materials and methods after the body of the paper. The well known journal Science does away with separate sections altogether, except for the abstract.

Your papers are to adhere to the form and style required for the Journal of Biological Chemistry, requirements that are shared by many journals in the life sciences.

General style

Specific editorial requirements for submission of a manuscript will always supercede instructions in these general guidelines.

To make a paper readable

  • Print or type using a 12 point standard font, such as Times, Geneva, Bookman, Helvetica, etc.
  • Text should be double spaced on 8 1/2" x 11" paper with 1 inch margins, single sided
  • Number pages consecutively
  • Start each new section on a new page
  • Adhere to recommended page limits

Mistakes to avoid

  • Placing a heading at the bottom of a page with the following text on the next page (insert a page break!)
  • Dividing a table or figure - confine each figure/table to a single page
  • Submitting a paper with pages out of order

In all sections of your paper

  • Use normal prose including articles ("a", "the," etc.)
  • Stay focused on the research topic of the paper
  • Use paragraphs to separate each important point (except for the abstract)
  • Indent the first line of each paragraph
  • Present your points in logical order
  • Use present tense to report well accepted facts - for example, 'the grass is green'
  • Use past tense to describe specific results - for example, 'When weed killer was applied, the grass was brown'
  • Avoid informal wording, don't address the reader directly, and don't use jargon, slang terms, or superlatives
  • Avoid use of superfluous pictures - include only those figures necessary to presenting results

Title Page

Select an informative title as illustrated in the examples in your writing portfolio example package. Include the name(s) and address(es) of all authors, and date submitted. "Biology lab #1" would not be an informative title, for example.

Abstract

The summary should be two hundred words or less. See the examples in the writing portfolio package.

General intent

An abstract is a concise single paragraph summary of completed work or work in progress. In a minute or less a reader can learn the rationale behind the study, general approach to the problem, pertinent results, and important conclusions or new questions.

Writing an abstract

Write your summary after the rest of the paper is completed. After all, how can you summarize something that is not yet written? Economy of words is important throughout any paper, but especially in an abstract. However, use complete sentences and do not sacrifice readability for brevity. You can keep it concise by wording sentences so that they serve more than one purpose. For example, "In order to learn the role of protein synthesis in early development of the sea urchin, newly fertilized embryos were pulse-labeled with tritiated leucine, to provide a time course of changes in synthetic rate, as measured by total counts per minute (cpm)." This sentence provides the overall question, methods, and type of analysis, all in one sentence. The writer can now go directly to summarizing the results.

Summarize the study, including the following elements in any abstract. Try to keep the first two items to no more than one sentence each.

  • Purpose of the study - hypothesis, overall question, objective
  • Model organism or system and brief description of the experiment
  • Results, including specific data - if the results are quantitative in nature, report quantitative data; results of any statistical analysis shoud be reported
  • Important conclusions or questions that follow from the experiment(s)

Style:

  • Single paragraph, and concise
  • As a summary of work done, it is always written in past tense
  • An abstract should stand on its own, and not refer to any other part of the paper such as a figure or table
  • Focus on summarizing results - limit background information to a sentence or two, if absolutely necessary
  • What you report in an abstract must be consistent with what you reported in the paper
  • Corrrect spelling, clarity of sentences and phrases, and proper reporting of quantities (proper units, significant figures) are just as important in an abstract as they are anywhere else

Introduction

Your introductions should not exceed two pages (double spaced, typed). See the examples in the writing portfolio package.

General intent

The purpose of an introduction is to aquaint the reader with the rationale behind the work, with the intention of defending it. It places your work in a theoretical context, and enables the reader to understand and appreciate your objectives.

Writing an introduction

The abstract is the only text in a research paper to be written without using paragraphs in order to separate major points. Approaches vary widely, however for our studies the following approach can produce an effective introduction.

  • Describe the importance (significance) of the study - why was this worth doing in the first place? Provide a broad context.
  • Defend the model - why did you use this particular organism or system? What are its advantages? You might comment on its suitability from a theoretical point of view as well as indicate practical reasons for using it.
  • Provide a rationale. State your specific hypothesis(es) or objective(s), and describe the reasoning that led you to select them.
  • Very briefy describe the experimental design and how it accomplished the stated objectives.

Style:

  • Use past tense except when referring to established facts. After all, the paper will be submitted after all of the work is completed.
  • Organize your ideas, making one major point with each paragraph. If you make the four points listed above, you will need a minimum of four paragraphs.
  • Present background information only as needed in order support a position. The reader does not want to read everything you know about a subject.
  • State the hypothesis/objective precisely - do not oversimplify.
  • As always, pay attention to spelling, clarity and appropriateness of sentences and phrases.

Materials and Methods

There is no specific page limit, but a key concept is to keep this section as concise as you possibly can. People will want to read this material selectively. The reader may only be interested in one formula or part of a procedure. Materials and methods may be reported under separate subheadings within this section or can be incorporated together.

General intent

This should be the easiest section to write, but many students misunderstand the purpose. The objective is to document all specialized materials and general procedures, so that another individual may use some or all of the methods in another study or judge the scientific merit of your work. It is not to be a step by step description of everything you did, nor is a methods section a set of instructions. In particular, it is not supposed to tell a story. By the way, your notebook should contain all of the information that you need for this section.

Writing a materials and methods section

Materials:

  • Describe materials separately only if the study is so complicated that it saves space this way.
  • Include specialized chemicals, biological materials, and any equipment or supplies that are not commonly found in laboratories.
  • Do not include commonly found supplies such as test tubes, pipet tips, beakers, etc., or standard lab equipment such as centrifuges, spectrophotometers, pipettors, etc.
  • If use of a specific type of equipment, a specific enzyme, or a culture from a particular supplier is critical to the success of the experiment, then it and the source should be singled out, otherwise no.
  • Materials may be reported in a separate paragraph or else they may be identified along with your procedures.
  • In biosciences we frequently work with solutions - refer to them by name and describe completely, including concentrations of all reagents, and pH of aqueous solutions, solvent if non-aqueous.
Methods:
  • See the examples in the writing portfolio package
  • Report the methodology (not details of each procedure that employed the same methodology)
  • Describe the mehodology completely, including such specifics as temperatures, incubation times, etc.
  • To be concise, present methods under headings devoted to specific procedures or groups of procedures
  • Generalize - report how procedures were done, not how they were specifically performed on a particular day. For example, report "samples were diluted to a final concentration of 2 mg/ml protein;" don't report that "135 microliters of sample one was diluted with 330 microliters of buffer to make the protein concentration 2 mg/ml." Always think about what would be relevant to an investigator at another institution, working on his/her own project.
  • If well documented procedures were used, report the procedure by name, perhaps with reference, and that's all. For example, the Bradford assay is well known. You need not report the procedure in full - just that you used a Bradford assay to estimate protein concentration, and identify what you used as a standard. The same is true for the SDS-PAGE method, and many other well known procedures in biology and biochemistry.
Style:
  • It is awkward or impossible to use active voice when documenting methods without using first person, which would focus the reader's attention on the investigator rather than the work. Therefore when writing up the methods most authors use third person passive voice.
  • Use normal prose in this and in every other section of the paper – avoid informal lists, and use complete sentences.

What to avoid

  • Materials and methods are not a set of instructions.
  • Omit all explanatory information and background - save it for the discussion.
  • Omit information that is irrelevant to a third party, such as what color ice bucket you used, or which individual logged in the data.

Results

The page length of this section is set by the amount and types of data to be reported. Continue to be concise, using figures and tables, if appropriate, to present results most effectively. See recommendations for content, below.

General intent

The purpose of a results section is to present and illustrate your findings. Make this section a completely objective report of the results, and save all interpretation for the discussion.

Writing a results section

IMPORTANT: You must clearly distinguish material that would normally be included in a research article from any raw data or other appendix material that would not be published. In fact, such material should not be submitted at all unless requested by the instructor.

Content

  • Summarize your findings in text and illustrate them, if appropriate, with figures and tables.
  • In text, describe each of your results, pointing the reader to observations that are most relevant.
  • Provide a context, such as by describing the question that was addressed by making a particular observation.
  • Describe results of control experiments and include observations that are not presented in a formal figure or table, if appropriate.
  • Analyze your data, then prepare the analyzed (converted) data in the form of a figure (graph), table, or in text form.

What to avoid

  • Do not discuss or interpret your results, report background information, or attempt to explain anything.
  • Never include raw data or intermediate calculations in a research paper.
  • Do not present the same data more than once.
  • Text should complement any figures or tables, not repeat the same information.
  • Please do not confuse figures with tables - there is a difference.

Style

  • As always, use past tense when you refer to your results, and put everything in a logical order.
  • In text, refer to each figure as "figure 1," "figure 2," etc. ; number your tables as well (see the reference text for details)
  • Place figures and tables, properly numbered, in order at the end of the report (clearly distinguish them from any other material such as raw data, standard curves, etc.)
  • If you prefer, you may place your figures and tables appropriately within the text of your results section.

Figures and tables

  • Either place figures and tables within the text of the result, or include them in the back of the report (following Literature Cited) - do one or the other
  • If you place figures and tables at the end of the report, make sure they are clearly distinguished from any attached appendix materials, such as raw data
  • Regardless of placement, each figure must be numbered consecutively and complete with caption (caption goes under the figure)
  • Regardless of placement, each table must be titled, numbered consecutively and complete with heading (title with description goes above the table)
  • Each figure and table must be sufficiently complete that it could stand on its own, separate from text

Discussion

Journal guidelines vary. Space is so valuable in the Journal of Biological Chemistry, that authors are asked to restrict discussions to four pages or less, double spaced, typed. That works out to one printed page. While you are learning to write effectively, the limit will be extended to five typed pages. If you practice economy of words, that should be plenty of space within which to say all that you need to say.

General intent

The objective here is to provide an interpretation of your results and support for all of your conclusions, using evidence from your experiment and generally accepted knowledge, if appropriate. The significance of findings should be clearly described.

Writing a discussion

Interpret your data in the discussion in appropriate depth. This means that when you explain a phenomenon you must describe mechanisms that may account for the observation. If your results differ from your expectations, explain why that may have happened. If your results agree, then describe the theory that the evidence supported. It is never appropriate to simply state that the data agreed with expectations, and let it drop at that.

  • Decide if each hypothesis is supported, rejected, or if you cannot make a decision with confidence. Do not simply dismiss a study or part of a study as "inconclusive."
  • Research papers are not accepted if the work is incomplete. Draw what conclusions you can based upon the results that you have, and treat the study as a finished work
  • You may suggest future directions, such as how the experiment might be modified to accomplish another objective.
  • Explain all of your observations as much as possible, focusing on mechanisms.
  • Decide if the experimental design adequately addressed the hypothesis, and whether or not it was properly controlled.
  • Try to offer alternative explanations if reasonable alternatives exist.
  • One experiment will not answer an overall question, so keeping the big picture in mind, where do you go next? The best studies open up new avenues of research. What questions remain?
  • Recommendations for specific papers will provide additional suggestions.
Style:
  • When you refer to information, distinguish data generated by your own studies from published information or from information obtained from other students (verb tense is an important tool for accomplishing that purpose).
  • Refer to work done by specific individuals (including yourself) in past tense.
  • Refer to generally accepted facts and principles in present tense. For example, "Doofus, in a 1989 survey, found that anemia in basset hounds was correlated with advanced age. Anemia is a condition in which there is insufficient hemoglobin in the blood."

The biggest mistake that students make in discussions is to present a superficial interpretation that more or less re-states the results. It is necessary to suggest why results came out as they did, focusing on the mechanisms behind the observations.

Literature Cited

Please note that in the introductory laboratory course, you will not be required to properly document sources of all of your information. One reason is that your major source of information is this website, and websites are inappropriate as primary sources. Second, it is problematic to provide a hundred students with equal access to potential reference materials. You may nevertheless find outside sources, and you should cite any articles that the instructor provides or that you find for yourself.

List all literature cited in your paper, in alphabetical order, by first author. In a proper research paper, only primary literature is used (original research articles authored by the original investigators). Be cautious about using web sites as references - anyone can put just about anything on a web site, and you have no sure way of knowing if it is truth or fiction. If you are citing an on line journal, use the journal citation (name, volume, year, page numbers). Some of your papers may not require references, and if that is the case simply state that "no references were consulted."

Vietnamese translation: http://translate.coupofy.com/writing-research-papers/
Russian translation: http://blog.hightwall.com/reportform/

One thought on “Data Original Title Example For Essay

Leave a Reply

Your email address will not be published. Required fields are marked *